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ABSTRACT 

The 3D components of today’s user interfaces are still underdevel- 
oped. Direct interaction with 3D objects has been limited thus far 
to gestural picking, manipulation with linear transformations, and 
simple camera motion. Further, there are no toolkits for building 
3D user interfaces. We present a system which allows experimenta- 
tion with 3D widgets, encapsulated3D geometry and behavior. Our 
widgets are first-class objects in the same 3D environment used to 
develop the application. This integration of widgets and application 
objects provides a higher bandwidth between interface and applica- 
tion than exists in more traditional UI toolkit-based interfaces. We 
hope to allow user-interface designers to build highly interactive 
3D environments more easily than is possible with today’s tools. 
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1 Introduction 

Modem user-interface software is built using widgets, objects with 
geometry and behavior used to control the application and its ob- 
jects. However, most of today’s user interfaces for 3D applications 
take little advantage of the third dimension’s added power, predom- 
inantly using 2D widgets. Commercial modeling and visualization 
systems typically present one or more 3D views surrounded by a 
large, hierarchical menu system, often with supporting dialog boxes 
and sliders. The menu system is sometimes replaced or augmented 
by another 2D interface widget such as a network or hierarchy ed- 
itor. Direct interaction with the 3D world is limited primarily to 
interactive viewing, selection, translation, and rotation. 3D widgets 
used in these interactions include a 3D cursor, gestural translation, a 
virtual sphere, and direct manipulation of 3D spline points on paths 
or patches. While today’s 3D applications clearly allow users to 
be productive with the current interface technology, we believe that 
they could be improved significantly by making greater use of 3D 
in the interface itself. 

In virtual-reality systems, 3D interaction is especially crucial. 
However, the significant difficulties of 3D input and display have 
led research in virtual worlds to concentrate far more on the de- 
velopment of new devices and device-handling techniques than on 
higher-level techniques for 3D interaction [19]. Such interaction 
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goes no further than a straightforward interpretation of device data, 
such as using a Polhemus for a head tracker or a DataGlove for sim- 
ple gestural recognition of commands such as select, translate and 
rotate. Some virtual-reality systems make use of menus floating in 
3-space with 3D icons instead of 2D pixmap icons [3]. Besides the 
additional options for its position, however, such a menu provides 
no more expressive power than its 2D equivalent. 

There are many reasons for the underutilization of 3D. First, al- 
most all interaction techniques must be created from scratch, since 
essentially no toolkits of 3D interaction techniques exist. Second, 
such toolkits are difEcult to develop until metaphors for 3D inter- 
faces grow beyond their current infancy. Finally, we believe such a 
toolkit is intrinsically more difficult to create than its 2D counterpart 
because of the inherent complexity of 3D interaction. 

Widget toolkits are well known for 2D applications (e.g., the 
Macintosh Programmer’s Toolbox, OSF/Motif, XView) [17]. How- 
ever, 3D graphics libraries such as PHIGS+ and SGI’s GL provide 
very little support for interaction beyond simple device handling. 
The industry standard PHXGS+ provides only six widgets (pick, lo- 
cator, stroke, choice, valuator, and string). Further, the application 
programmer cannotchangetheir look or feel, and all except 3D pick 
correlation are low-level, providing little functionality beyond that 
provided by a physical device. Thus, application developers are 
left to implement basic interactive techniques such as virtual sphere 
rotation themselves. 

Most paradigms and metaphors for 3D interfaces are less de- 
veloped than those for 2D interfaces. Some 3D metaphors are the 
naturhl analogs of those familiar in 2D, such as 3D menus and 
rooms [14] [4]. However, research in 3D interfaces must develop 
new metaphors and interaction techniques to take advantage of the 
greater possibilities of 3D. The cone tree and perspective wall, de- 
signed at Xerox PARC [22] [13], demonstrate the potential of 3D 
representation and interactive animation. 

User interfaces are inherently difEcult to program [17]. 3D in- 
terfaces complicate interface design and implementation, since the 
interface must take into account such issues as a richer collection 
of primitives, attributes, and rendering styles, multiple coordinate 
systems, viewing projections, visibility determination, and lighting 
and shading. Further, 3D environments allow many more degrees 
of freedom than those easily specified with common interface hard- 
ware like mice. The interface can easily obscure itself, and 3D 
interaction tasks can require great agility and manual dexterity. In- 
deed, physical human factors are a central part of 3D interface 
design, whereas 2D interface designers can assume that hardware 
designers have handled the ergonomics of device interaction. 

This paperreports some Erst steps towards the goal of creating a 
richly interactive 3D application development environment. After a 
more detailed discussion of the problems inherent in designing and 
implementing 3D widgets, we present a framework under develop- 
ment for their implementation, design, and use. By working with 
an object-oriented notion of a widget, we hope to provide a toolkit 
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of modifiable and reusable 3D interaction techniques, 

2 Extending Widgets 

There are several points to consider when designing an environ- 
ment for developing 3D widgets. Most fundamentally, what is a 
widget? How do existing notions of widgets derived from 2D envi- 
ronments extend to 3D environments? Secondly, how should a 3D 
application communicate with its 3D interface? Finally, what kinds 
of primitives are needed to build 3D widgets? 2D environments, 
like the X Widow System, provide raster drawing primitives and 
event-based callback mechanisms. What sorts of primitives should 
a corresponding 3D environment provide? 

2.1 Defining “widget” 
We define a widget as an encapsulation of geometry and behavior 
used to control or display information about application objects. 
Although this definition is somewhat vague and general, it has the 
advantage of covering all the areas of the interface literature we 
have explored, from general constructs such as Garnet’s Interaction 
Objects [16] and the Interactive Objects of Xerox’s 3D Rooms [21] 
to very specific kinds of widgets such as those found in the X Toolkit 
or the Macintosh Toolkit. 

The extent to which a 2D widget should be classified as consisting 
of behavior or of geometry varies widely. Some useful widgets are 
primarily geometric, such as the dividing lines and frames that 
serve to organize and partition an interface. Others, such as a 
gestural rotation widget in an object-oriented drawing program, 
have no inherent geometry. 3D widgets encompass a similar range 
of geometry and behavior. This makes our definition of the term 
“widget” useful for understanding interface problems that are not 
dimension-specific. 

2.2 Comparing common 2D widgets and 3D 
widgets 

Despite their often complex appearance, most 2D widgets have very 
simple behavior. They commonly have few degrees of freedom 
(usually only one) and support only a small range of values within 
a degree of freedom. Thus, while toggle buttons have bitmap icons 
to represent different states, they represent only a single bit of 
information, and similarly, sliders represent a single number within 
a range, usually only a small integer range. 

3D space inherently has more degrees of freedom than 2D space: 
a rigid flying body has six degrees of freedom in 3D versus three 
in 2D. 3D graphics libraries are, in general, more capable of han- 
dling general transformations than their 2D counterparts. As noted, 
common 2D widgets rarely take advantage of all the degrees of 
freedom available to them. The use of multiple degrees of free- 
dom to enhance interaction is thus largely unexplored potential, 
even in 2D [23], and 3D, with its greater degrees of freedom, has 
correspondingly greater potential. This potential must of course be 
handled with restraint: while we would like to be able to use several 
degrees of freedom simultaneously, using too many may make the 
widget too difficult to use. Rather, interface designers should be 
able to specify any subset. 

The user interacts with most widgets, whether 2D or 3D, through 
manipulation involving motion and simple gestures that are in- 
terpreted directly, to produce, for example, a sliding button or a 
popup window. However, the user can gain more expressive power 
through interaction techniques that interpret and process movements 
and make possible more sophisticated interaction. For example, a 
calligraphic drawing program can attach a pen to a cursor by means 
of a simulated spring [9], a simple motion-control technique that 
makes possible a whole new range of drawings not easily created 
with a rigid pen-cursor linkage. 

Both 2D and 3D widgets can benefit from more sophisticated 
reaction to user input. Interaction can potentially achieve substan- 

tial gains by using such techniques as dynamic constraints, inverse 
kinematics, and physical simulation as components of direct ma- 
nipulation interfaces. These techniques currently appear only in 
systems designed explicitly to present or use them, such as demos 
or prototypes, but in the future, these techniques should be as acces- 
sible as any other componentin the widget designer’s repertoire [8]. 

2.3 Integrating the application and the user 
interface 

User interfaces were originally designed by application program- 
mers using the same tools they used to build applications. This pro- 
duced interfaces that were tightly integrated with the application. 
Recently, however, interface design is more often done by specialists 
using UI development tools [17]. While this separation produces 
more consistent interfaces and more modular programs, it can also 
produce interfaces that are not as helpful as they could be if they 
were more specialized to the application - the interface designer 
is not only aided but also limited by the toolkit and its metaphors. 
In particular, as has been noted by those critiquing WIMP inter- 
faces [8], today’s toolkits are not oriented towards highly interactive 
applications. 

Such highly interactive applications require a high bandwidth 
between the application and the user interface, particularly for se- 
mantic feedback [S]. Prior UI research indicates that this may be 
best accomplished if the application and the interface are part of the 
same development environment, with the same tools being used to 
build both [18]. An integrated environment has additional software 
engineering benefits. First, only a single paradigm must be learned, 
rather than one for the interface and another for the application. 
Also, separate paradigms can be hard to integrate at several lev- 
els: the conceptual level, the code implementation level, and the 
compile-debug level. Advocating integration is not a call to abol- 
ish modularity in application and interface design. Rather, it is a 
suggestion that the principles of modularity can be pushed too far. 
The reasons for separating the application from the user interface 
are valid, but the benefits of a single development environment may 
outweigh the benefits of using two, especially for 3D applications. 

Consider the benefits of higher bandwidth between the applica- 
tion and the interface. A menu selection is a relatively small amount 
of input that specifies only an operation, operand, or attribute, leav- 
ing other parameters to be specified elsewhere (perhaps in another 
menu or a dialog box). Gestural interfaces, on the other hand, allow 
the user to specify operation, operand, and parameters in a single 
action [23], providing a faster interface and commands that do not 
depend on previous or further actions. 

In addition to providing better input, a tighter integration between 
application and interface lets the application provide semanticfeed- 
back while the user is interacting. Structured program editors have 
provided this kind of functionality for many years through syntax 
checkers that check for or prevent syntactic errors as the user types. 
Similarly, some 2D graphical circuit design tools prevent the user 
from making physically impossible or illogical connections. 

Existing UI toolkits do allow callbacks to alter a widget based on 
application feedback, but the mechanisms to do so are often clumsy 
and hard to use. Our interfaces are constructed in an environment 
called UGA [25] in which widgets can actively depend on the state 
of other widgets, in the same way that any other objects (e.g., the 
application’s objects) in our system can depend on each other. Our 
widgets are not external to the application model. They are first 
class objects, indistinguishable from application objects. This pro- 
vides the UI designer with all of our system’s power for specifying 
behavior and geometry, and gives as high a bandwidth between ap- 
plication and interface as between application objects themselves, 
creating the possibility of interfaces that are tightly coupled with 
the application, both for input and for output. 

We have advocated both 3D widgets and widgets that are tightly 
integrated with an application. The latter idea is the more powerful 
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of the two, since it can apply to all areas of interface design. In 
the remainder of the paper, we consider tools applicable to inte- 
grated widgets and then examine some case studies of integrated 
3D widgets. 

3 Tools for Designing and Implementing 
Integrated Widgets 

3D interfaces are presently too underdeveloped for us to specify a 
comprehensive library of tools for building useful interfaces. We 
have therefore devised an environment that provides a great degree 
of flexibility to design new 3D widgets. It is often pointed out that 
flexibility in a user-interface design environment is a double-edged 
sword, allowing novel and useful interfaces as well as novel and 
useless interfaces. Because of the undeveloped state of current 
3D interfaces, however, we prefer to allow the possibility of some 
poorly conceived designs rather than rule out unexplored possibili- 
ties. 

3.1 Dependencies and controllers 
UGA supports the geometric components of widgets through its rich 
modeling environment. The system supports the behavioral aspects 
of widgets through one-way constraints called dependencies [2.5]. 
An object can be explicitly related to another object by using a 
dependency. Since widgets are first-class objects in UGA, they can 
use this dependency mechanism as easily as application objects can. 
For example, a cube can become a simple slider by constraining it 
to move only along its n axis, and a torus’s inner radius can then 
depend on the x position of the cube. 

To provide multi-way constraints and cyclical constraint net- 
works [18], we use confrollers [25], objects whose primary purpose 
is to control other objects. Thus, our dynamic constraint solver is 
encapsulated as a controller. Additionally, we encapsulate physical 
devices as controllers that filter and pass values to objects. Finally, 
we can use controllers to encapsulate simulation methods, such as 
inverse kinematics or collision detection. By employing controllers, 
widgets can make use of general constraints, hardware devices, and 
simulation techniques. 

3.2 A dialog model for sequencing 
Some researchers choose to separate UI design into two broad cat- 
egories: data-oriented UI design, usually supported through con- 
straints, and dialog-oriented UI design [ll]. We find both models 
useful. In addition to the data-oriented mechanisms of dependen- 
cies and controllers, we provide a dialog modelthat uses augmented 
transition networks (ATNs). We use ATNs because the sequencing 
of an interface is explicitly declared and is more easily visualized 
in a hierarchical ATN than in context-free grammars or event sys- 
tems [7]. 

A simple transition network is a finite-state automaton (FSA). 
A complex interface can be described as an FSA but the complex- 
ity produces a combinatorial explosion of FSA states. Augmented 
transition networks handle some of the limitations of simple FSAs 
(allowing such behaviors as definite loops without specifying inter- 
mediate states) by adding variables and conditional transition along 
arcs based on the values in the variables. Recursive transition net- 
works are used to provide hierarchy for ATNs, by allowing control 
in one ATN be suspended until a recursively invoked ATN reaches 
its final state. 

Normally, an ATN, even a recursive one, has only one current 
state. Therefore, some events that can happen at any time, such as 
an “abort” or “help” request, are especially cumbersome to specify, 
requiring an additional arc from every state in the ATN. By contrast, 
event systems have greater expressiveness than ATNs [7], since they 
can easily handle an “abort” or “help” event by simply adding a new 
event handler to process this event. This would seem to make event 
systems a better choice. However, notions of current state, history, 

or context are more difficult to express in event systems. Consider a 
“help” event that should provide context-sensitive information. An 
event model must provide a different event for each context. On 
the other hand, an ATN can handle a uniform “help” event, with 
arcs corresponding to context-dependent actions looping back to 
each state or leading to one or more help states. We would like 
a dialog model that combines the best features of both ATNs and 
event handlers. 

Thus, we modify the ATN model to allow possibly disconnected 
components of the state graph and more than one active state [12]. 
We can now represent a set of event handlers as a group of discon- 
nected states in an ATN, one state per event handler, each with a 
single arc back to itself. The arc’s input tokens represent the corre- 
sponding event handler’s events, and the arc’s action represents the 
handler routine. However, we can add explicit sequencing to this 
ATN. For example, in our model, it is easy to specify the sequence 
of events found in snap-dragging, described in Section 4.3, but rel- 
atively cumbersome to specify in an event model, because of the 
need to represent history. 

Our dialog model also allows a clean separation of subparts of 
the interface (Le., individual widgets or groups of widgets). The 
dialog specification of each subpart can be represented as a subgraph 
of the ATN that describes the specification of the entire interface. 
These subparts can run in parallel, corresponding to a situation in 
which several widgets are logically operating at the same time. This 
parallelism is very useful: we can, for example, use the mouse to 
control both a 3D cursor and a higher-level widget, such as the rack 
described in Section 4.5. 

The components of this dialog model, such as the individual states 
in the ATN, are first-class objects in our system. Since the dialog 
model is embedded in the same environment as the application itself, 
dependencies can be used to establish the connections between the 
ATN and the application that allow each to modify the other. 

3.3 Applying object construction techniques 
The UGA system supports a rich set of modeling primitives and op- 
erations, including constructive solid geometry (CSG), volumetric 
sculpting, spline patch objects and deformations. Both geomet- 
ric and non-geometric modeling techniques, such as hierarchical 
grouping, can be applied to widget creation. Geometric techniques 
are used to specify a widget’s geometry. Correspondingly, since 
ATN states are first-class objects, they can be organized using non- 
geometric object grouping techniques. Thus, both a widget’s ge- 
ometry and behavior are specified in the same unified framework, 
the framework of the application objects it controls. 

The underlying construction technique we use is detegafion, 
where one object (the child) is created from a pre-existing object 
(the parent) [24] [lo]. If the parent object is changed, the child 
changes as well. Since both the parent and its children are objects 
in the system, and any object can be a controller modifying other ob- 
jects, one of the children can modify the parent object, and therefore 
modify itself and all of its siblings. Delegation provides the ability 
to changelarge portions of the interface at once. Furthermore, since 
delegation relationships are maintained at run time, we can modify 
the interface without recompiling. This allows rapid prototyping of 
interface designs. 

4 Examples of 3D Widgets in Our System 

Our user interface group has developed several simple 3D widgets 
in our framework. Some of these, such as the virtual sphere and the 
cone tree, duplicate other researchers’ widgets; others are experi- 
ments with new paradigms for a 3D user interface. We present these 
widgets below, explaining the design process we used in creating 
them, and stress the progress made possible by rapid prototyping. 
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4.1 A virtual sphere 
A virtual sphere rotation widget can be handled by a simple two-state 
ATN (Figure 1). The ATN processes mouse motion, passing the 
mouse positions to a function that maps the 2D mouse coordinates 
into another object’s space, in this case producing a point on the 
surface of a sphere. The deltas between a series of these projections 
produce rotations. We can easily change the kind of object that 
mouse coordinates are mapped to, so as to produce a “virtual cube” 
or “virtual donut.” This sort of modification of the interface can be 
done at run time. 

while mouse not 

start rotation 
up, rotate 

on mouse down 

finish rotation 
on mouse up 

Figure 1: A two-state ATN for virtual sphere rotation 

4.2 Handles 
Start State 

Object handles [6] are a 3D widget that contains more visual geom- 
etry than the virtual sphere widget. We can build handles with an 
arbitrarily complex appearance. Once they are built, we are free to 
establish dependencies on them or use them as a controller. Color 
Plate I shows various handles being used to translate, rotate and 
scale an object. 

update point td snap to 

PerformSnap State 

Figure 2: A four-state ATN for interactive snapping 

The same kind of constrained motion can be produced by hold- 
ing down various modifier keys or different combinations of but- 
tons [20]. However, a user presented with such an interface has no 
easy way to determine what the possible actions are. Handles allow 
constrained motion through intuitive direct manipulation: when a 
particular handle is selected, motion is constrained along or around 
the axis it describes. For example, clicking on an object-space 
translation handle located along an object’s x axis limits translation 
to the n axis. 

By changing the states in the ATN, the user can experiment with 
different ways of specifying snap-dragging. Several different ATNs 
for different snapping techniques can be concurrently developed 
and experimented with, even at run time. For example, a user 
could develop a more complex ATN to allow the specification of 
the distance between the surfaces as well as the relative orientation 
of the Frenet frames. 

4.4 A color picker 
The visual feedback of a widget can range from the direct move- Color spaces are inherently multidimensional. To illustrate these 

ment of the selected object to more complex widgets, such as han- spaces we can build a color picker in three dimensions and show 
dles that include numerical output and other quantitative indicators. how changes in the values affect the output color. Color plate II 
Because our system provides rich support for geometry, the same shows two interactive views of RGB color space and one interactive 
set of primitives used for the application can be used to assemble view of HSV color space. One view of RGB space is built with three 
widgets and their visual feedback. The behavior of handles can sliders, each of which was specified using dependencies. Another 
be produced without the corresponding geometry. An example is view is built using a cubical marker that can translate within the 
the creation of “hot spots” on an object that may or may not have bounds of a unit cube. Here, each axis of the cube’s position rep- 
a visual indication. The behavior of a virtual sphere can in turn resents a component of the color value. Thus, all three components 
be augmented with geometry - for instance, a semi-transparent can be specified simultaneously using 3D gestural translation. The 
sphere can be placed around the object during rotation to convey third view is of HSV space. As in the RGB cube, the position of 
the behavior of the widget to the user more effectively. The flexi- the spherical marker in the center represents the three components 
bility of the system allows the widget designer and user to explore of the HSV color. The constraints on the sphere permit it to move 
a wide range of options. around in the cone that represents valid HSV color values. 

All of the spaces are different visualizations of the same data, 
kept consistent through the use of dependencies. Thus, a user can 
choose a color in one view and see how that color is represented in 
the other two. As the user interactively chooses a color, the other 
two color representations update accordingly. Users familiar with 
the RGB spacecan learn about the nature of HSV space by watching 
the motion of the HSV indicator as they move the RGB indicator. 

4.3 Snapping 
With a more intricate ATN (Figure 2) we can perform simple snap- 
dragging [2]. A mouse’s coordinates are used to generate a ray 
from the camera through the projection of the mouse’s position 
onto the viewplane. If this ray intersects an object, the ATN lets 
the user choose a point on an object to snap to a point on another 
object. Since this is done with ray intersection, the point to snap 

includes a complete Frenet frame [ 151 defined by the surface normal 
and tangents. When the user releases the mouse button and clicks 
again, the ATN begins checking to see if the ray specified by the 
mouse intersects another object. If so, this new object becomes the 
object to snap to. Again, the user can choose exactly which point 
to use, including the entire Frenet frame. When the user has chosen 
both points, the widget produces a transformation to align the two 
frames, and applies it to the tirst object. 

SnapPoint State 
mouse motion, 
update snap point 

ChooseGoal State 
mouse motion, 
rubber band 

mouse down? 
select 1 st object 

I 

mouse down,. 
select 2nd object, 
choose point 
to snap to 
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4.5 The rack 4.6 The cone tree 
Recall that the ATN states are first-class objects and that our system 
provides hierarchicalgrouping of objects. An ATN canpass control 
to another ATN through dependencies and controller mechanisms. 
Thus, pre-existing ATN’s can be grouped together to form a more 
complex, hierarchical ATN (see Figure 3) that controls the sequenc- 
ing of the lower-level ATNs. In other words, we can build more 
complex widgets out of pre-existing widgets. 

More complicated metaphors for 3D interfaces can be constructed 
and experimented with in our system. A large number of rotation 
widgets can be assembled into a Xerox PARC-style cone tree. Here, 
we use the cone tree to display the hierarchy of a 3D model (Color 
Plate III). The cone tree is itself an object in the system and can be 
freely manipulated as a whole. 

To construct a more complex widget, we start with the simple 
rotation and translation handle widgets discussed in Section 4.2. 
By rearranging them and changing their connections, we combine 
them to form a “rack” for specifying high-level deformations such 
as twists, tapers and bends [ 11, shown in Color Plate IV. 

Different handles specify the parameters to three deformations. 
The distance between the two upright handles speciEes the range 
over which the deformation applies. The angle of the red handle 
on the end indicates the amount of bend, and the angle of the pink 
handle indicates the amount of twist, while the height of the blue 
handle indicates the amount of taper. By reconfiguring the rack, 
changing the number of handles and their respective behaviors, the 
user can control how the deformation is specified. Specializedracks 
that only bend, taper, or twist can be easily built. A new rack can be 
designed to apply wave deformations, or to allow both geometric 
transformations and nonlinear deformations at the same time. 

The nature of this widget inherently requires motion control to 
animate the rotation of the subtrees. When we modify the cone 
tree, we can affect the underlying geometric hierarchy it represents. 
Moving subtrees of the cone tree to other nodes in the tree affects 
the hierarchy of the model that the cone tree represents. If we use 
other tools to modify the hierarchy, the cone tree’s structure is also 
updated. 

Since the cone tree is itself a widget, we can combine it with 
other widgets to make more intricate information browsers, much 
as simple rotation and translation widgets were composed above to 
make a deformation editor. We plan to explore using cone trees to 
represent portions of a hypermedia graph that are primarily hierar- 
chical but have some cross-links, e.g., a multimedia technical paper 
with its various sections, subsections, references, and see-also%. 

5 Conclusions 

Textual specification of a bend deformation requires four floating- 
point values and two vectors. The rack specifies all of thesevisually. 
The major axis of the rack specifies one vector, and the red handle 
specifies another vector, determining the angle and direction in 
which the object should bend. The floating-point values are all 
specified by how much particular handles are moved. 

5.1 Accomplishments 
We have presented a concept of 3D widgets as first-class objects en- 
capsulating behavior and geometry that can be treated as any other 
objects in a 3D world. Their behaviors may be defined using com- 
plex control methods and user input techniques. We have provided 
a Erst implementation of these widgets within the UGA system. 
Widgets can be rapidly prototyped, modiEed, and combined into 
more complicated systems of widgets. Close integration with the 
application allows rich forms of interaction and feedbackin our 3D 
applications. 

Rotate widget used for bend 

Rotate widget used for twist 

Translate widget used for taper 

Figure 3: Several ATNs can be combined to form a more complex 
widget. This widget specifies high-level deformations. 

The rack is a widget that provides a more meaningful interface to 
complex deformations than aconventional widget such as a panel of 
independentsliders. Such apanelprovides no semantic correlation: 
the user must extrapolate a single deformation from multiple inde- 
pendent slider positions. Thus, the rack serves to abstract out the 
essential characteristics of a deformation. When handles are used to 
translate an object in its own object space, the handles themselves 
give the user feedback on the orientation of that space, which might 
not be apparent from the object itself. Similarly, an object being 
deformed with the rack may be so geometrically complex that it has 
no clear axis around which to twist, bend or taper. The rack provides 
this axis, along with immediate and understandable feedback about 
the magnitude and effects of the deformations. 

5.2 Future work 
Constructing 3D widgets is reasonably fast with our system. How- 
ever, widget designers at present must be experts in the use of UGA. 
We hope to make specifying 3D widgets even more natural and in- 
tuitive than it is now, so that a far less technically expert designer 
can implement 3D widgets. Part of the complexity stems from lim- 
itations of dependencies. We might address these limitations with 
a more generic constraint model at the basic system level, making 
it easier to specify some of the complex relationships of 3D wid- 
gets. In addition, our system does not run as fast as we would 
like, even on today’s high-end platforms. A large portion of time 
is spent evaluating dependencies. Unfortunately, the addition of a 
more generic constraint model is not likely to help performance. 
Thus, dependencies merit a close look, at both the conceptual and 
the implementation level. 

We would like to continue developing individual widgets and 
exploring the potential of various techniques from the world of 3D 
graphics in interface design. We want to investigate the use of 
more sophisticated motion control, modeling and rendering tech- 
niques for 3D widgets. We can foresee widgets that will use 
dynamic constraints, physical simulation, volumetric techniques, 
particle systems, and even radios&y. Our application framework 
already includes many of these techniques, so it is simply a matter 
of their imaginative application in our system to make use of such 
techniques in 3D interfaces. 

In addition, we are in the process of constructing full 3D appli- 
cations and interfaces with the system presented. We believe the 
unusualnature of our widgets will provide some interesting avenues 
of exploration. Since the widgets are as much a part of the appli- 
cation as the application itself, it is straightforward to manipulate 
widgets with widgets. In other words, a user interface can be built 
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by starting with simple widgets and using them to bootstrap more 
complex ones. 

Finally, we hope to develop a high-level UIDS (user interface 
design system) [5] for our system. As previously noted, our system 
currently has no tools for making high-level specifications of an 
interface. Most commercial UIMSs, having been built on top of a 
widget toolkit, focus on appearance and geometry of widgets. Some 
research-level UIDSs handle behavior and sequencing. A UIDS 
suitable for our system would clearly have to be able to handle full 
application behavior and would perhaps be an Application Design 
System, a full-fledged programming environment for 3D interactive 
applications. 
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