
Three-Dimensional Widgets

D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Hemdon,
Daniel C. Robbins, Robert C. Zeleznik,

Andries van Dam

Computer Science Department
Brown University

Providence, RI

ABSTRACT

The 3D components of today’s user interfaces are still underdevel-
oped. Direct interaction with 3D objects has been limited thus far
to gestural picking, manipulation with linear transformations, and
simple camera motion. Further, there are no toolkits for building
3D user interfaces. We present a system which allows experimenta-
tion with 3D widgets, encapsulated3D geometry and behavior. Our
widgets are first-class objects in the same 3D environment used to
develop the application. This integration of widgets and application
objects provides a higher bandwidth between interface and applica-
tion than exists in more traditional UI toolkit-based interfaces. We
hope to allow user-interface designers to build highly interactive
3D environments more easily than is possible with today’s tools.

Keywords

User Interface Design, Widgets, 30 Interaction, Virtual Reality

1 Introduction

Modem user-interface software is built using widgets, objects with
geometry and behavior used to control the application and its ob-
jects. However, most of today’s user interfaces for 3D applications
take little advantage of the third dimension’s added power, predom-
inantly using 2D widgets. Commercial modeling and visualization
systems typically present one or more 3D views surrounded by a
large, hierarchical menu system, often with supporting dialog boxes
and sliders. The menu system is sometimes replaced or augmented
by another 2D interface widget such as a network or hierarchy ed-
itor. Direct interaction with the 3D world is limited primarily to
interactive viewing, selection, translation, and rotation. 3D widgets
used in these interactions include a 3D cursor, gestural translation, a
virtual sphere, and direct manipulation of 3D spline points on paths
or patches. While today’s 3D applications clearly allow users to
be productive with the current interface technology, we believe that
they could be improved significantly by making greater use of 3D
in the interface itself.

In virtual-reality systems, 3D interaction is especially crucial.
However, the significant difficulties of 3D input and display have
led research in virtual worlds to concentrate far more on the de-
velopment of new devices and device-handling techniques than on
higher-level techniques for 3D interaction [19]. Such interaction

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
e 1992 ACM 0-89791-471-6/92/000310183...$1.50

goes no further than a straightforward interpretation of device data,
such as using a Polhemus for a head tracker or a DataGlove for sim-
ple gestural recognition of commands such as select, translate and
rotate. Some virtual-reality systems make use of menus floating in
3-space with 3D icons instead of 2D pixmap icons [3]. Besides the
additional options for its position, however, such a menu provides
no more expressive power than its 2D equivalent.

There are many reasons for the underutilization of 3D. First, al-
most all interaction techniques must be created from scratch, since
essentially no toolkits of 3D interaction techniques exist. Second,
such toolkits are difEcult to develop until metaphors for 3D inter-
faces grow beyond their current infancy. Finally, we believe such a
toolkit is intrinsically more difficult to create than its 2D counterpart
because of the inherent complexity of 3D interaction.

Widget toolkits are well known for 2D applications (e.g., the
Macintosh Programmer’s Toolbox, OSF/Motif, XView) [17]. How-
ever, 3D graphics libraries such as PHIGS+ and SGI’s GL provide
very little support for interaction beyond simple device handling.
The industry standard PHXGS+ provides only six widgets (pick, lo-
cator, stroke, choice, valuator, and string). Further, the application
programmer cannotchangetheir look or feel, and all except 3D pick
correlation are low-level, providing little functionality beyond that
provided by a physical device. Thus, application developers are
left to implement basic interactive techniques such as virtual sphere
rotation themselves.

Most paradigms and metaphors for 3D interfaces are less de-
veloped than those for 2D interfaces. Some 3D metaphors are the
naturhl analogs of those familiar in 2D, such as 3D menus and
rooms [14] [4]. However, research in 3D interfaces must develop
new metaphors and interaction techniques to take advantage of the
greater possibilities of 3D. The cone tree and perspective wall, de-
signed at Xerox PARC [22] [13], demonstrate the potential of 3D
representation and interactive animation.

User interfaces are inherently difEcult to program [17]. 3D in-
terfaces complicate interface design and implementation, since the
interface must take into account such issues as a richer collection
of primitives, attributes, and rendering styles, multiple coordinate
systems, viewing projections, visibility determination, and lighting
and shading. Further, 3D environments allow many more degrees
of freedom than those easily specified with common interface hard-
ware like mice. The interface can easily obscure itself, and 3D
interaction tasks can require great agility and manual dexterity. In-
deed, physical human factors are a central part of 3D interface
design, whereas 2D interface designers can assume that hardware
designers have handled the ergonomics of device interaction.

This paperreports some Erst steps towards the goal of creating a
richly interactive 3D application development environment. After a
more detailed discussion of the problems inherent in designing and
implementing 3D widgets, we present a framework under develop-
ment for their implementation, design, and use. By working with
an object-oriented notion of a widget, we hope to provide a toolkit

183

of modifiable and reusable 3D interaction techniques,

2 Extending Widgets

There are several points to consider when designing an environ-
ment for developing 3D widgets. Most fundamentally, what is a
widget? How do existing notions of widgets derived from 2D envi-
ronments extend to 3D environments? Secondly, how should a 3D
application communicate with its 3D interface? Finally, what kinds
of primitives are needed to build 3D widgets? 2D environments,
like the X Widow System, provide raster drawing primitives and
event-based callback mechanisms. What sorts of primitives should
a corresponding 3D environment provide?

2.1 Defining “widget”
We define a widget as an encapsulation of geometry and behavior
used to control or display information about application objects.
Although this definition is somewhat vague and general, it has the
advantage of covering all the areas of the interface literature we
have explored, from general constructs such as Garnet’s Interaction
Objects [16] and the Interactive Objects of Xerox’s 3D Rooms [21]
to very specific kinds of widgets such as those found in the X Toolkit
or the Macintosh Toolkit.

The extent to which a 2D widget should be classified as consisting
of behavior or of geometry varies widely. Some useful widgets are
primarily geometric, such as the dividing lines and frames that
serve to organize and partition an interface. Others, such as a
gestural rotation widget in an object-oriented drawing program,
have no inherent geometry. 3D widgets encompass a similar range
of geometry and behavior. This makes our definition of the term
“widget” useful for understanding interface problems that are not
dimension-specific.

2.2 Comparing common 2D widgets and 3D
widgets

Despite their often complex appearance, most 2D widgets have very
simple behavior. They commonly have few degrees of freedom
(usually only one) and support only a small range of values within
a degree of freedom. Thus, while toggle buttons have bitmap icons
to represent different states, they represent only a single bit of
information, and similarly, sliders represent a single number within
a range, usually only a small integer range.

3D space inherently has more degrees of freedom than 2D space:
a rigid flying body has six degrees of freedom in 3D versus three
in 2D. 3D graphics libraries are, in general, more capable of han-
dling general transformations than their 2D counterparts. As noted,
common 2D widgets rarely take advantage of all the degrees of
freedom available to them. The use of multiple degrees of free-
dom to enhance interaction is thus largely unexplored potential,
even in 2D [23], and 3D, with its greater degrees of freedom, has
correspondingly greater potential. This potential must of course be
handled with restraint: while we would like to be able to use several
degrees of freedom simultaneously, using too many may make the
widget too difficult to use. Rather, interface designers should be
able to specify any subset.

The user interacts with most widgets, whether 2D or 3D, through
manipulation involving motion and simple gestures that are in-
terpreted directly, to produce, for example, a sliding button or a
popup window. However, the user can gain more expressive power
through interaction techniques that interpret and process movements
and make possible more sophisticated interaction. For example, a
calligraphic drawing program can attach a pen to a cursor by means
of a simulated spring [9], a simple motion-control technique that
makes possible a whole new range of drawings not easily created
with a rigid pen-cursor linkage.

Both 2D and 3D widgets can benefit from more sophisticated
reaction to user input. Interaction can potentially achieve substan-

tial gains by using such techniques as dynamic constraints, inverse
kinematics, and physical simulation as components of direct ma-
nipulation interfaces. These techniques currently appear only in
systems designed explicitly to present or use them, such as demos
or prototypes, but in the future, these techniques should be as acces-
sible as any other componentin the widget designer’s repertoire [8].

2.3 Integrating the application and the user
interface

User interfaces were originally designed by application program-
mers using the same tools they used to build applications. This pro-
duced interfaces that were tightly integrated with the application.
Recently, however, interface design is more often done by specialists
using UI development tools [17]. While this separation produces
more consistent interfaces and more modular programs, it can also
produce interfaces that are not as helpful as they could be if they
were more specialized to the application - the interface designer
is not only aided but also limited by the toolkit and its metaphors.
In particular, as has been noted by those critiquing WIMP inter-
faces [8], today’s toolkits are not oriented towards highly interactive
applications.

Such highly interactive applications require a high bandwidth
between the application and the user interface, particularly for se-
mantic feedback [S]. Prior UI research indicates that this may be
best accomplished if the application and the interface are part of the
same development environment, with the same tools being used to
build both [18]. An integrated environment has additional software
engineering benefits. First, only a single paradigm must be learned,
rather than one for the interface and another for the application.
Also, separate paradigms can be hard to integrate at several lev-
els: the conceptual level, the code implementation level, and the
compile-debug level. Advocating integration is not a call to abol-
ish modularity in application and interface design. Rather, it is a
suggestion that the principles of modularity can be pushed too far.
The reasons for separating the application from the user interface
are valid, but the benefits of a single development environment may
outweigh the benefits of using two, especially for 3D applications.

Consider the benefits of higher bandwidth between the applica-
tion and the interface. A menu selection is a relatively small amount
of input that specifies only an operation, operand, or attribute, leav-
ing other parameters to be specified elsewhere (perhaps in another
menu or a dialog box). Gestural interfaces, on the other hand, allow
the user to specify operation, operand, and parameters in a single
action [23], providing a faster interface and commands that do not
depend on previous or further actions.

In addition to providing better input, a tighter integration between
application and interface lets the application provide semanticfeed-
back while the user is interacting. Structured program editors have
provided this kind of functionality for many years through syntax
checkers that check for or prevent syntactic errors as the user types.
Similarly, some 2D graphical circuit design tools prevent the user
from making physically impossible or illogical connections.

Existing UI toolkits do allow callbacks to alter a widget based on
application feedback, but the mechanisms to do so are often clumsy
and hard to use. Our interfaces are constructed in an environment
called UGA [25] in which widgets can actively depend on the state
of other widgets, in the same way that any other objects (e.g., the
application’s objects) in our system can depend on each other. Our
widgets are not external to the application model. They are first
class objects, indistinguishable from application objects. This pro-
vides the UI designer with all of our system’s power for specifying
behavior and geometry, and gives as high a bandwidth between ap-
plication and interface as between application objects themselves,
creating the possibility of interfaces that are tightly coupled with
the application, both for input and for output.

We have advocated both 3D widgets and widgets that are tightly
integrated with an application. The latter idea is the more powerful

184

of the two, since it can apply to all areas of interface design. In
the remainder of the paper, we consider tools applicable to inte-
grated widgets and then examine some case studies of integrated
3D widgets.

3 Tools for Designing and Implementing
Integrated Widgets

3D interfaces are presently too underdeveloped for us to specify a
comprehensive library of tools for building useful interfaces. We
have therefore devised an environment that provides a great degree
of flexibility to design new 3D widgets. It is often pointed out that
flexibility in a user-interface design environment is a double-edged
sword, allowing novel and useful interfaces as well as novel and
useless interfaces. Because of the undeveloped state of current
3D interfaces, however, we prefer to allow the possibility of some
poorly conceived designs rather than rule out unexplored possibili-
ties.

3.1 Dependencies and controllers
UGA supports the geometric components of widgets through its rich
modeling environment. The system supports the behavioral aspects
of widgets through one-way constraints called dependencies [2.5].
An object can be explicitly related to another object by using a
dependency. Since widgets are first-class objects in UGA, they can
use this dependency mechanism as easily as application objects can.
For example, a cube can become a simple slider by constraining it
to move only along its n axis, and a torus’s inner radius can then
depend on the x position of the cube.

To provide multi-way constraints and cyclical constraint net-
works [18], we use confrollers [25], objects whose primary purpose
is to control other objects. Thus, our dynamic constraint solver is
encapsulated as a controller. Additionally, we encapsulate physical
devices as controllers that filter and pass values to objects. Finally,
we can use controllers to encapsulate simulation methods, such as
inverse kinematics or collision detection. By employing controllers,
widgets can make use of general constraints, hardware devices, and
simulation techniques.

3.2 A dialog model for sequencing
Some researchers choose to separate UI design into two broad cat-
egories: data-oriented UI design, usually supported through con-
straints, and dialog-oriented UI design [ll]. We find both models
useful. In addition to the data-oriented mechanisms of dependen-
cies and controllers, we provide a dialog modelthat uses augmented
transition networks (ATNs). We use ATNs because the sequencing
of an interface is explicitly declared and is more easily visualized
in a hierarchical ATN than in context-free grammars or event sys-
tems [7].

A simple transition network is a finite-state automaton (FSA).
A complex interface can be described as an FSA but the complex-
ity produces a combinatorial explosion of FSA states. Augmented
transition networks handle some of the limitations of simple FSAs
(allowing such behaviors as definite loops without specifying inter-
mediate states) by adding variables and conditional transition along
arcs based on the values in the variables. Recursive transition net-
works are used to provide hierarchy for ATNs, by allowing control
in one ATN be suspended until a recursively invoked ATN reaches
its final state.

Normally, an ATN, even a recursive one, has only one current
state. Therefore, some events that can happen at any time, such as
an “abort” or “help” request, are especially cumbersome to specify,
requiring an additional arc from every state in the ATN. By contrast,
event systems have greater expressiveness than ATNs [7], since they
can easily handle an “abort” or “help” event by simply adding a new
event handler to process this event. This would seem to make event
systems a better choice. However, notions of current state, history,

or context are more difficult to express in event systems. Consider a
“help” event that should provide context-sensitive information. An
event model must provide a different event for each context. On
the other hand, an ATN can handle a uniform “help” event, with
arcs corresponding to context-dependent actions looping back to
each state or leading to one or more help states. We would like
a dialog model that combines the best features of both ATNs and
event handlers.

Thus, we modify the ATN model to allow possibly disconnected
components of the state graph and more than one active state [12].
We can now represent a set of event handlers as a group of discon-
nected states in an ATN, one state per event handler, each with a
single arc back to itself. The arc’s input tokens represent the corre-
sponding event handler’s events, and the arc’s action represents the
handler routine. However, we can add explicit sequencing to this
ATN. For example, in our model, it is easy to specify the sequence
of events found in snap-dragging, described in Section 4.3, but rel-
atively cumbersome to specify in an event model, because of the
need to represent history.

Our dialog model also allows a clean separation of subparts of
the interface (Le., individual widgets or groups of widgets). The
dialog specification of each subpart can be represented as a subgraph
of the ATN that describes the specification of the entire interface.
These subparts can run in parallel, corresponding to a situation in
which several widgets are logically operating at the same time. This
parallelism is very useful: we can, for example, use the mouse to
control both a 3D cursor and a higher-level widget, such as the rack
described in Section 4.5.

The components of this dialog model, such as the individual states
in the ATN, are first-class objects in our system. Since the dialog
model is embedded in the same environment as the application itself,
dependencies can be used to establish the connections between the
ATN and the application that allow each to modify the other.

3.3 Applying object construction techniques
The UGA system supports a rich set of modeling primitives and op-
erations, including constructive solid geometry (CSG), volumetric
sculpting, spline patch objects and deformations. Both geomet-
ric and non-geometric modeling techniques, such as hierarchical
grouping, can be applied to widget creation. Geometric techniques
are used to specify a widget’s geometry. Correspondingly, since
ATN states are first-class objects, they can be organized using non-
geometric object grouping techniques. Thus, both a widget’s ge-
ometry and behavior are specified in the same unified framework,
the framework of the application objects it controls.

The underlying construction technique we use is detegafion,
where one object (the child) is created from a pre-existing object
(the parent) [24] [lo]. If the parent object is changed, the child
changes as well. Since both the parent and its children are objects
in the system, and any object can be a controller modifying other ob-
jects, one of the children can modify the parent object, and therefore
modify itself and all of its siblings. Delegation provides the ability
to changelarge portions of the interface at once. Furthermore, since
delegation relationships are maintained at run time, we can modify
the interface without recompiling. This allows rapid prototyping of
interface designs.

4 Examples of 3D Widgets in Our System

Our user interface group has developed several simple 3D widgets
in our framework. Some of these, such as the virtual sphere and the
cone tree, duplicate other researchers’ widgets; others are experi-
ments with new paradigms for a 3D user interface. We present these
widgets below, explaining the design process we used in creating
them, and stress the progress made possible by rapid prototyping.

185

4.1 A virtual sphere
A virtual sphere rotation widget can be handled by a simple two-state
ATN (Figure 1). The ATN processes mouse motion, passing the
mouse positions to a function that maps the 2D mouse coordinates
into another object’s space, in this case producing a point on the
surface of a sphere. The deltas between a series of these projections
produce rotations. We can easily change the kind of object that
mouse coordinates are mapped to, so as to produce a “virtual cube”
or “virtual donut.” This sort of modification of the interface can be
done at run time.

while mouse not

start rotation
up, rotate

on mouse down

finish rotation
on mouse up

Figure 1: A two-state ATN for virtual sphere rotation

4.2 Handles
Start State

Object handles [6] are a 3D widget that contains more visual geom-
etry than the virtual sphere widget. We can build handles with an
arbitrarily complex appearance. Once they are built, we are free to
establish dependencies on them or use them as a controller. Color
Plate I shows various handles being used to translate, rotate and
scale an object.

update point td snap to

PerformSnap State

Figure 2: A four-state ATN for interactive snapping

The same kind of constrained motion can be produced by hold-
ing down various modifier keys or different combinations of but-
tons [20]. However, a user presented with such an interface has no
easy way to determine what the possible actions are. Handles allow
constrained motion through intuitive direct manipulation: when a
particular handle is selected, motion is constrained along or around
the axis it describes. For example, clicking on an object-space
translation handle located along an object’s x axis limits translation
to the n axis.

By changing the states in the ATN, the user can experiment with
different ways of specifying snap-dragging. Several different ATNs
for different snapping techniques can be concurrently developed
and experimented with, even at run time. For example, a user
could develop a more complex ATN to allow the specification of
the distance between the surfaces as well as the relative orientation
of the Frenet frames.

4.4 A color picker
The visual feedback of a widget can range from the direct move- Color spaces are inherently multidimensional. To illustrate these

ment of the selected object to more complex widgets, such as han- spaces we can build a color picker in three dimensions and show
dles that include numerical output and other quantitative indicators. how changes in the values affect the output color. Color plate II
Because our system provides rich support for geometry, the same shows two interactive views of RGB color space and one interactive
set of primitives used for the application can be used to assemble view of HSV color space. One view of RGB space is built with three
widgets and their visual feedback. The behavior of handles can sliders, each of which was specified using dependencies. Another
be produced without the corresponding geometry. An example is view is built using a cubical marker that can translate within the
the creation of “hot spots” on an object that may or may not have bounds of a unit cube. Here, each axis of the cube’s position rep-
a visual indication. The behavior of a virtual sphere can in turn resents a component of the color value. Thus, all three components
be augmented with geometry - for instance, a semi-transparent can be specified simultaneously using 3D gestural translation. The
sphere can be placed around the object during rotation to convey third view is of HSV space. As in the RGB cube, the position of
the behavior of the widget to the user more effectively. The flexi- the spherical marker in the center represents the three components
bility of the system allows the widget designer and user to explore of the HSV color. The constraints on the sphere permit it to move
a wide range of options. around in the cone that represents valid HSV color values.

All of the spaces are different visualizations of the same data,
kept consistent through the use of dependencies. Thus, a user can
choose a color in one view and see how that color is represented in
the other two. As the user interactively chooses a color, the other
two color representations update accordingly. Users familiar with
the RGB spacecan learn about the nature of HSV space by watching
the motion of the HSV indicator as they move the RGB indicator.

4.3 Snapping
With a more intricate ATN (Figure 2) we can perform simple snap-
dragging [2]. A mouse’s coordinates are used to generate a ray
from the camera through the projection of the mouse’s position
onto the viewplane. If this ray intersects an object, the ATN lets
the user choose a point on an object to snap to a point on another
object. Since this is done with ray intersection, the point to snap

includes a complete Frenet frame [151 defined by the surface normal
and tangents. When the user releases the mouse button and clicks
again, the ATN begins checking to see if the ray specified by the
mouse intersects another object. If so, this new object becomes the
object to snap to. Again, the user can choose exactly which point
to use, including the entire Frenet frame. When the user has chosen
both points, the widget produces a transformation to align the two
frames, and applies it to the tirst object.

SnapPoint State
mouse motion,
update snap point

ChooseGoal State
mouse motion,
rubber band

mouse down?
select 1 st object

I

mouse down,.
select 2nd object,
choose point
to snap to

186

4.5 The rack 4.6 The cone tree
Recall that the ATN states are first-class objects and that our system
provides hierarchicalgrouping of objects. An ATN canpass control
to another ATN through dependencies and controller mechanisms.
Thus, pre-existing ATN’s can be grouped together to form a more
complex, hierarchical ATN (see Figure 3) that controls the sequenc-
ing of the lower-level ATNs. In other words, we can build more
complex widgets out of pre-existing widgets.

More complicated metaphors for 3D interfaces can be constructed
and experimented with in our system. A large number of rotation
widgets can be assembled into a Xerox PARC-style cone tree. Here,
we use the cone tree to display the hierarchy of a 3D model (Color
Plate III). The cone tree is itself an object in the system and can be
freely manipulated as a whole.

To construct a more complex widget, we start with the simple
rotation and translation handle widgets discussed in Section 4.2.
By rearranging them and changing their connections, we combine
them to form a “rack” for specifying high-level deformations such
as twists, tapers and bends [11, shown in Color Plate IV.

Different handles specify the parameters to three deformations.
The distance between the two upright handles speciEes the range
over which the deformation applies. The angle of the red handle
on the end indicates the amount of bend, and the angle of the pink
handle indicates the amount of twist, while the height of the blue
handle indicates the amount of taper. By reconfiguring the rack,
changing the number of handles and their respective behaviors, the
user can control how the deformation is specified. Specializedracks
that only bend, taper, or twist can be easily built. A new rack can be
designed to apply wave deformations, or to allow both geometric
transformations and nonlinear deformations at the same time.

The nature of this widget inherently requires motion control to
animate the rotation of the subtrees. When we modify the cone
tree, we can affect the underlying geometric hierarchy it represents.
Moving subtrees of the cone tree to other nodes in the tree affects
the hierarchy of the model that the cone tree represents. If we use
other tools to modify the hierarchy, the cone tree’s structure is also
updated.

Since the cone tree is itself a widget, we can combine it with
other widgets to make more intricate information browsers, much
as simple rotation and translation widgets were composed above to
make a deformation editor. We plan to explore using cone trees to
represent portions of a hypermedia graph that are primarily hierar-
chical but have some cross-links, e.g., a multimedia technical paper
with its various sections, subsections, references, and see-also%.

5 Conclusions

Textual specification of a bend deformation requires four floating-
point values and two vectors. The rack specifies all of thesevisually.
The major axis of the rack specifies one vector, and the red handle
specifies another vector, determining the angle and direction in
which the object should bend. The floating-point values are all
specified by how much particular handles are moved.

5.1 Accomplishments
We have presented a concept of 3D widgets as first-class objects en-
capsulating behavior and geometry that can be treated as any other
objects in a 3D world. Their behaviors may be defined using com-
plex control methods and user input techniques. We have provided
a Erst implementation of these widgets within the UGA system.
Widgets can be rapidly prototyped, modiEed, and combined into
more complicated systems of widgets. Close integration with the
application allows rich forms of interaction and feedbackin our 3D
applications.

Rotate widget used for bend

Rotate widget used for twist

Translate widget used for taper

Figure 3: Several ATNs can be combined to form a more complex
widget. This widget specifies high-level deformations.

The rack is a widget that provides a more meaningful interface to
complex deformations than aconventional widget such as a panel of
independentsliders. Such apanelprovides no semantic correlation:
the user must extrapolate a single deformation from multiple inde-
pendent slider positions. Thus, the rack serves to abstract out the
essential characteristics of a deformation. When handles are used to
translate an object in its own object space, the handles themselves
give the user feedback on the orientation of that space, which might
not be apparent from the object itself. Similarly, an object being
deformed with the rack may be so geometrically complex that it has
no clear axis around which to twist, bend or taper. The rack provides
this axis, along with immediate and understandable feedback about
the magnitude and effects of the deformations.

5.2 Future work
Constructing 3D widgets is reasonably fast with our system. How-
ever, widget designers at present must be experts in the use of UGA.
We hope to make specifying 3D widgets even more natural and in-
tuitive than it is now, so that a far less technically expert designer
can implement 3D widgets. Part of the complexity stems from lim-
itations of dependencies. We might address these limitations with
a more generic constraint model at the basic system level, making
it easier to specify some of the complex relationships of 3D wid-
gets. In addition, our system does not run as fast as we would
like, even on today’s high-end platforms. A large portion of time
is spent evaluating dependencies. Unfortunately, the addition of a
more generic constraint model is not likely to help performance.
Thus, dependencies merit a close look, at both the conceptual and
the implementation level.

We would like to continue developing individual widgets and
exploring the potential of various techniques from the world of 3D
graphics in interface design. We want to investigate the use of
more sophisticated motion control, modeling and rendering tech-
niques for 3D widgets. We can foresee widgets that will use
dynamic constraints, physical simulation, volumetric techniques,
particle systems, and even radios&y. Our application framework
already includes many of these techniques, so it is simply a matter
of their imaginative application in our system to make use of such
techniques in 3D interfaces.

In addition, we are in the process of constructing full 3D appli-
cations and interfaces with the system presented. We believe the
unusualnature of our widgets will provide some interesting avenues
of exploration. Since the widgets are as much a part of the appli-
cation as the application itself, it is straightforward to manipulate
widgets with widgets. In other words, a user interface can be built

187

by starting with simple widgets and using them to bootstrap more
complex ones.

Finally, we hope to develop a high-level UIDS (user interface
design system) [5] for our system. As previously noted, our system
currently has no tools for making high-level specifications of an
interface. Most commercial UIMSs, having been built on top of a
widget toolkit, focus on appearance and geometry of widgets. Some
research-level UIDSs handle behavior and sequencing. A UIDS
suitable for our system would clearly have to be able to handle full
application behavior and would perhaps be an Application Design
System, a full-fledged programming environment for 3D interactive
applications.

5.3 Acknowledgments
This work was supported in part by NSF, DARPA, IBM, Sun Mi-
crosystems, NCR, Hewlett Packard and Digital Equipment Corpo-
ration. Software contributions by Bitstream Inc., Pixar and Visual
Edge Software Ltd. are gratefully acknowledged. We also thank
Frank Graf for his help in implementing and extending the rack
widget and Nate Huang for technical support.

References

Ill

PI

[31

141

PI

161

[71

WI

PI

[lOI

Dll

WI

Alan H. Barr. Global and local deformations of solid prim-
itives. In Proceedings of the ACM SIGGRAPH, Computer
Graphics, volume 18(3), pages 21-30, July 1984.

Eric A. Bier. Snap-dragging in three dimensions. In Proceed-
ings of the ACM SIGGRAPH, Computer Graphics, volume
24(4), pages 193-204, March 1990.

Jeff Butterworth, Andrew Davidson, Stephen Hench, and
T. Marc Olano. 3DM: A three dimensional modeler using
a head-mounted display. In Proceedings of the 1992 Sympo-
sium on Interactive 30 Graphics, 1992.

Stuart K. Card, George G. Robertson, and JockD. Ma&inlay.
The information visualizer, an information workspace. In
Human Factors in Computing Systems, Proceedings of the
ACMSZGCHI, pages 181-188.Addison Wesley, 1991.

James Foley, Won Chui Kim, Srdjan Kovacevic, and Kevin
Murray. Designing interfaces at a high level of abstraction.
IEEE Sof?ware, pages 25-32, January 1989.

Tinsley Galyean, Melissa Gold, William Hsu, Henry Kauf-
man, and Mark Stem. Manipulation of virtual three-
dimensional objects using two-dimensional input devices.
Class project, Brown University, December 1989.

Mark Green. A survey of three dialogue models. ACM Truns-
actions on Graphics, 5(3):244-3751986.

Mark Green and Robert Jacob. SIGGRAPH ‘90 workshop re-
port: Software architectures and metaphors for non-WIMP
user interfaces. Computer Graphics, 25(3):229-235, July
1991.

Paul Haeberh. dynadraw. posted to comp.graphics,
1990. GL program.

Brent Halperin and Van Nguyen. A model for object-based
inheritance. In Peter Wegner and Bruce Shriver, editors, Re-
searchDirections in Object-OrientedProgramming. The MlT
Press, 1987.

Scott H. Hudson. Graphical specification of flexible user inter-
face displays. In Proceedings of the ACMSymposiumon User
Interface Software and Technology, pages 105-l 14,1989.

Robert J. K. Jacob. A specification language for direct-
manipulation user interfaces. ACM Transactions on Graphics,
5(4):283-317, October 1986.

u31

u41

1151

D61

1171

D81

WI

WI

WI

P21

w31

1241

WI

Jock D. Ma&inlay, George G. Robertson, and Stuart K. Card.
The perspective wall: Detail and context smoothly integrated.
In Human Factors in Computing Systems, Proceedings of the
ACMSZGCHI. ACM SIGCHI, 1991.

Microelectronics and Computer Technology Corporation. An
introduction to the visual metaphors team’s software releases.
Video tape, 1986. TR# HI-344-86.

Richard S. Millman and George D. Parker. Elements of Dif
ferential Geometry. Prentice-Hall, 1977.

Brad A. Myers. Encapsulating interactive behaviors. In Pro-
ceedings of CHI ‘89 (Austin, TX, April 30-May 4. 1989),
pages 319-324. ACM, New York, May 1989.

Brad A. Myers. User-interface tools: Introduction and survey.
IEEE Software, pages 15-23, January 1989.

Brad A. Myers, Dario A. Guise, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin, An-
drew Mickish, andphilippe Marchal. Garnet: Comprehensive
support for graphical, highly interactive user interfaces. IEEE
Computer, pages 71-85, November 1990.

Randy Pausch. personal communication, 1991.

Gary B. Phillips, Jianmin Zhao, and Norman I. Badler. Inter-
active real-time articulated figure manipulation using multiple
kinematic constraints. In Special issue on the 1990 Sympo-
sium on Interactive 30 Graphics, Computer Graphics, pages
245-250. ACM SIGGRAPH, ACM Press, March 1990.

George G. Robertson, Stuart K. Card, and Jock D. Ma&inlay.
The cognitive coprocessor architecture for interactive user
interfaces. In Proceedings of the ACM Symposium on User
Interface Software and Technology, pages 10-18.1989.

George G. Robertson, JockD. Ma&inlay, and Stuart K. Card.
Cone trees: Animated 3D visualizations of hierarchical infor-
mation. In Human Factors in Computing Systems, Proceed-
ings of the ACM SZGCHI. ACM SIGCHI, 1991.

Dean Rubine. Specifying gestures by example. In Proceedings
of the ACMSIGGRAPH. Computer Graphics, pages 329-337.
ACM SIGGRAPH, Addison-Wesley, July 1991.

Peter Wegner. The object-oriented classification paradigm. In
Peter Wegner and Bruce Shriver, editors, ResearchDirections
in Object-Oriented Programming. The MIT Press, 1987.

Robert C. Zeleznik, D. Brookshire Conner, Matthias M.
Wloka, Daniel G. Aliaga, Nathan T. Huang, Philip M. Hub-
bard, Brian Knep, Henry Kaufman, John F. Hughes, and An-
dries van Dam. An object-oriented framework for the inte-
gration of interactive animation techniques. In Proceedings of
the ACM SIGGRAPH, Computer Graphics, pages 105-112.
ACM SIGGRAPH, Addison-Wesley, July 1991.

188

Proceedings
1992 Symposium on Interactive 3D Graphics

Cambridge, Massachusetts
29 March - 1 April 1992

Program Co-Chairs

Marc Levoy Edwin E. Catmull
Stanford University Pixar

Symposium Chair

David Zeltzer
MIT Media Laboratory

Sponsored by the following organizations:

Office of Naval Research
National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard
Silicon Graphics

Sun Microsystems
MIT Media Laboratory

In Cooperation with ACM SIGGRAPH

Proceedings
1992 Symposium on Interactive 3D Graphics

Cambridge, Massachusetts
29 March - 1 April 1992

Program Co-Chairs

Marc Levoy Edwin E. Catmull
Stanford University Pixar

Symposium Chair

David Zeltzer
MIT Media Laboratory

Sponsored by the following organizations:

Office of Naval Research
National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard
Silicon Graphics

Sun Microsystems
MIT Media Laboratory

In Cooperation with ACM SIGGRAPH

